Partial Fraction Decomposition with Integration

mardi 25 février 2014

1. The problem statement, all variables and given/known data



∫(2x3-4x-8)/(x2-x)(x2+4) dx





2. Relevant equations







3. The attempt at a solution



∫(2x3-4x-8)/x(x-1)(x2+4) dx

Next I left off the integral sign so I could do the partial fractions:



2x3-4x-8=(A/x)+(B/(x-1))+((Cx+D)/(x2+4))



2x3-4x-8=A(x3-x2+4x-4)+B(x3+4x)+(Cx+D)(x2-x)



2x3-4x-8=x3(A+B+C)-x2(A+C-D)+x(4A+4B-D)-4A



2=A+B+C



0=A+C-D



-4=4A+4B-D



-8=-A(4)

A=2



Did I set this up correctly? I'm not entirely sure how to solve for these variables.





0 commentaires:

Enregistrer un commentaire