1. The problem statement, all variables and given/known data
∫(2x3-4x-8)/(x2-x)(x2+4) dx
2. Relevant equations
3. The attempt at a solution
∫(2x3-4x-8)/x(x-1)(x2+4) dx
Next I left off the integral sign so I could do the partial fractions:
2x3-4x-8=(A/x)+(B/(x-1))+((Cx+D)/(x2+4))
2x3-4x-8=A(x3-x2+4x-4)+B(x3+4x)+(Cx+D)(x2-x)
2x3-4x-8=x3(A+B+C)-x2(A+C-D)+x(4A+4B-D)-4A
2=A+B+C
0=A+C-D
-4=4A+4B-D
-8=-A(4)
A=2
Did I set this up correctly? I'm not entirely sure how to solve for these variables.
∫(2x3-4x-8)/(x2-x)(x2+4) dx
2. Relevant equations
3. The attempt at a solution
∫(2x3-4x-8)/x(x-1)(x2+4) dx
Next I left off the integral sign so I could do the partial fractions:
2x3-4x-8=(A/x)+(B/(x-1))+((Cx+D)/(x2+4))
2x3-4x-8=A(x3-x2+4x-4)+B(x3+4x)+(Cx+D)(x2-x)
2x3-4x-8=x3(A+B+C)-x2(A+C-D)+x(4A+4B-D)-4A
2=A+B+C
0=A+C-D
-4=4A+4B-D
-8=-A(4)
A=2
Did I set this up correctly? I'm not entirely sure how to solve for these variables.
0 commentaires:
Enregistrer un commentaire