1. The problem statement, all variables and given/known data
$$y'' - 2y = x + 1$$
2. Relevant equations
$$ y_{o} = Ae^{√(2)x} + Be^{-√(2)x} $$
$$ v_{1}'e^{√(2)x} + v_{2}'e^{-√(2)x}\equiv 0 $$
$$ √(2)v_{1}'e^{√(2)x}-√(2) - v_{2}'e^{-√(2)x} = x + 1 $$
3. The attempt at a solution
$$ v_{2}' = \frac{x+1}{-2√(2)e^{-√(2)x}} $$
$$ v_{2} = (\frac{-x}{4}+\frac{√2}{8}-\frac{1}{4})*e^{√(2)x} $$
$$v_{1}' = (\frac{x+1}{-2√(2)e^{-√(2)x}})(e^{-2√(2)x})$$
$$v_{1} = (\frac{-x}{4}-\frac{√2 + 2}{8})*e^{-√(2)x}$$
$$ y = Ae^{√(2)x} + Be^{-√(2)x} + (\frac{-x}{4}-\frac{√2 + 2}{8})*e^{-√(2)x} + (\frac{-x}{4}+\frac{√2}{8}-\frac{1}{4})*e^{√(2)x} $$
Where's my error? The correct solution is $$ y = Ae^{√(2)x} + Be^{-√(2)x} - \frac{x}{2} - \frac{1}{2}$$
$$y'' - 2y = x + 1$$
2. Relevant equations
$$ y_{o} = Ae^{√(2)x} + Be^{-√(2)x} $$
$$ v_{1}'e^{√(2)x} + v_{2}'e^{-√(2)x}\equiv 0 $$
$$ √(2)v_{1}'e^{√(2)x}-√(2) - v_{2}'e^{-√(2)x} = x + 1 $$
3. The attempt at a solution
$$ v_{2}' = \frac{x+1}{-2√(2)e^{-√(2)x}} $$
$$ v_{2} = (\frac{-x}{4}+\frac{√2}{8}-\frac{1}{4})*e^{√(2)x} $$
$$v_{1}' = (\frac{x+1}{-2√(2)e^{-√(2)x}})(e^{-2√(2)x})$$
$$v_{1} = (\frac{-x}{4}-\frac{√2 + 2}{8})*e^{-√(2)x}$$
$$ y = Ae^{√(2)x} + Be^{-√(2)x} + (\frac{-x}{4}-\frac{√2 + 2}{8})*e^{-√(2)x} + (\frac{-x}{4}+\frac{√2}{8}-\frac{1}{4})*e^{√(2)x} $$
Where's my error? The correct solution is $$ y = Ae^{√(2)x} + Be^{-√(2)x} - \frac{x}{2} - \frac{1}{2}$$
0 commentaires:
Enregistrer un commentaire