Hey guys! New to physicsforums. I wanted to ask a more conceptual question regarding RC time Circuits. I spent some time trying to derive the equations, and I feel like I'm not setting up the problem correctly. Here's my attempt:
Solutions according to profecssor:
1) ##q_{charge}(t)=C\epsilon(1-e^{-\frac{t}{\tau}})##
2) ##q_{discharge}(t)=q_{0} e^{\frac{-t}{\tau}}##
---
my attempt at solution 1
---
##q##-charge on capacitor
##R##-Resistance encountered in circuit
##C##-Capacitance of capaticor
##\epsilon##-Electromotive Force of battery
##t## -time since capacitor began charging
##\tau## - ##RC##
##i## -current
##C=\frac{q}{\epsilon}##
∴##q=C\epsilon##
##\epsilon=iR=\frac{dq}{dt}R##
∴##q=RC\frac{dq}{dt}=\tau\frac{dq}{dt}##
∴##\frac{1}{q}\frac{dq}{dt}=\frac{1}{\tau}##
∴##\int_0^t \frac{1}{q}\frac{dq}{dt} dt=\int_0^t \frac{1}{\tau} dt##
∴##\int_{q(0)}^{q(t)} \frac{dq}{q}=\int_0^t \frac{1}{\tau} dt##
∴##ln(q(t))-ln(q(0))=\frac{t}{\tau}##
∴##ln(\frac{q(t)}{q(0)})=\frac{t}{\tau}##
∴##e^{\frac{t}{\tau}}=\frac{q(t)}{q(0)}##
∴##q(t)=q(0)e^{\frac{t}{\tau}}##
So it's here that I'm like "I guess ##q(0)=c\epsilon## just for the sake of looking more like the professor's solution" <I realize how stupid this is... lol
∴##q(t)=C\epsilon e^{\frac{t}{\tau}}##
There must be something that I'm just totally missing here. The math seems right, so I'm thinking it's the set-up that I'm missing.
Any help is appreciated! Thank you!
Solutions according to profecssor:
1) ##q_{charge}(t)=C\epsilon(1-e^{-\frac{t}{\tau}})##
2) ##q_{discharge}(t)=q_{0} e^{\frac{-t}{\tau}}##
---
my attempt at solution 1
---
##q##-charge on capacitor
##R##-Resistance encountered in circuit
##C##-Capacitance of capaticor
##\epsilon##-Electromotive Force of battery
##t## -time since capacitor began charging
##\tau## - ##RC##
##i## -current
##C=\frac{q}{\epsilon}##
∴##q=C\epsilon##
##\epsilon=iR=\frac{dq}{dt}R##
∴##q=RC\frac{dq}{dt}=\tau\frac{dq}{dt}##
∴##\frac{1}{q}\frac{dq}{dt}=\frac{1}{\tau}##
∴##\int_0^t \frac{1}{q}\frac{dq}{dt} dt=\int_0^t \frac{1}{\tau} dt##
∴##\int_{q(0)}^{q(t)} \frac{dq}{q}=\int_0^t \frac{1}{\tau} dt##
∴##ln(q(t))-ln(q(0))=\frac{t}{\tau}##
∴##ln(\frac{q(t)}{q(0)})=\frac{t}{\tau}##
∴##e^{\frac{t}{\tau}}=\frac{q(t)}{q(0)}##
∴##q(t)=q(0)e^{\frac{t}{\tau}}##
So it's here that I'm like "I guess ##q(0)=c\epsilon## just for the sake of looking more like the professor's solution" <I realize how stupid this is... lol
∴##q(t)=C\epsilon e^{\frac{t}{\tau}}##
There must be something that I'm just totally missing here. The math seems right, so I'm thinking it's the set-up that I'm missing.
Any help is appreciated! Thank you!
0 commentaires:
Enregistrer un commentaire