Polarization and Bell measurments

dimanche 13 juillet 2014

There have been quite a few Bell threads lately, so I have been looking at them and various other sources. I'm missing something... any guidance appreciated.



Per Dr. Chinese's, "Once any photon passes through a polarizer lens, its polarization will be aligned exactly with the lens thereafter (even if it wasn't previously).".



Per Malus' and ubiquitous sites, of the photons passed through a vertical polarizer, some will pass a subsequent polarizer set to 45 degrees. I take this to mean that if a single vertically polarized photon may or may not pass a subsequent 45 degree filter, the same applies of any and all subsequent vertically polarized photons as well. So I am assuming that identically vertically polarized photons that encounter a 45 degree polarizing filter may or may not be passed; for example, of two subsequent such photons (I'll call them a "pair"), their passage or not though the filter does not have to match. If I assign all the possible pairs of a series, I will see some matching and some mismatching.



With respect to the simple Bell tests, this raises my question...



The question is, what is the difference between two vertically polarized photons going to a single 45 degree polarizing filter, and two photons identically emitted with vertical polarization, but going opposite directions to their respective but identically aligned 45 degree filters?



The Bell examples assume that the emitted pairs MUST show a specific and definite relationship between their measurements when the detectors are identically aligned, but two vertically polarized photons encountering a single 45 degree filter DO NOT have to be so... one may pass and the other may not, or vice versa, or both may pass, or neither.





I'm not seeing why emitted Bell test photons can't mismatch at the detectors even if the detectors' filter alignments match (say both at 45 degrees) and the emitted pair are both polarized vertically. Why can't one pass and the other fail?





0 commentaires:

Enregistrer un commentaire