1. The problem statement, all variables and given/known data
find the global extrema on the disc [tex] x^2 + y^2 \le 1[/tex]
given the function [tex]f(x,y)=xy+5y[/tex]
3. The attempt at a solution
For the interior of the disc
[tex]\nabla f = <y,x+5>[/tex]
the critical point is (0,-5)
for the boundary of the disc
using lagrange multipliers
[tex] \left\{\begin{array}{cc}y=\lambda 2x \\ x+5 = \lambda 2y \\ x^2+y^2 =1 \end{array}\right.[/tex]
solving for lambda
[tex] \lambda = \frac{y}{2x}; \lambda = \frac{x+5}{2y} [/tex]
[tex]\frac{y}{2x}=\frac{x+5}{2y} \Rightarrow y = \pm \sqrt{x(x+5)}[/tex]
now,
[tex]x^2 + (\pm \sqrt{x(x+5)})^2 = 1 \Rightarrow x = \frac{1}{4}(\pm\sqrt{33}-5)[/tex]
subbing the x value into
[tex]y = \pm \sqrt{x(x+5)} \Rightarrow \sqrt{\frac{1}{8}(5 \sqrt{33} - 21)}[/tex]
I know to test those critical points in the original function but before I go further I want to make sure I have done everything up to it correctly
find the global extrema on the disc [tex] x^2 + y^2 \le 1[/tex]
given the function [tex]f(x,y)=xy+5y[/tex]
3. The attempt at a solution
For the interior of the disc
[tex]\nabla f = <y,x+5>[/tex]
the critical point is (0,-5)
for the boundary of the disc
using lagrange multipliers
[tex] \left\{\begin{array}{cc}y=\lambda 2x \\ x+5 = \lambda 2y \\ x^2+y^2 =1 \end{array}\right.[/tex]
solving for lambda
[tex] \lambda = \frac{y}{2x}; \lambda = \frac{x+5}{2y} [/tex]
[tex]\frac{y}{2x}=\frac{x+5}{2y} \Rightarrow y = \pm \sqrt{x(x+5)}[/tex]
now,
[tex]x^2 + (\pm \sqrt{x(x+5)})^2 = 1 \Rightarrow x = \frac{1}{4}(\pm\sqrt{33}-5)[/tex]
subbing the x value into
[tex]y = \pm \sqrt{x(x+5)} \Rightarrow \sqrt{\frac{1}{8}(5 \sqrt{33} - 21)}[/tex]
I know to test those critical points in the original function but before I go further I want to make sure I have done everything up to it correctly
0 commentaires:
Enregistrer un commentaire