Wieland's thesis foreword in rough German-to-English translation

mercredi 2 avril 2014

Wieland's thesis was posted at tel.archives (the French open-archive website) on 3 March 2014.

http://ift.tt/1jWMn1t

The title of the 160-page dissertation is The Chiral Structure of Loop Quantum Gravity.

It is a noteworthy thesis which could be valuable to learn from, at several levels.

It's almost all in English but there are brief passages at the beginning in German and French (German is Wieland's native language, and the work was done in Marseille). For the convenience of other readers, who might wish to have it, I'll post a rough translation of the Foreword. Here is the original, and a rough draft translation will follow in the next post.

==quote from Wieland "The Chiral Structure of LQG"==

VORWORT

Von allen Grundkräften der Physik passt nur die Schwerkraft nicht zur Quantentheorie. Als schwächste aller vier Wechselwirkungen (das sind die beiden Kernkräfte, die elektromagnetische Kraft und eben die Gravitation) spielt sie für die Physik des Mikrokosmos keine Rolle; die Gravitation beherrscht die Welt im Großen. Die allgemeine Relativitätstheorie liefert den mathematischen Rahmen. Einstein erklärt die Schwerkraft aus der geometrischen Struktur von Raum und Zeit: Genauso wie die Krümmung der Erdoberfläche den Kurs eines Flugzeugs bestimmt (von Wien nach Washington folgt der Pilot der kürzesten Verbindung, einem Großkreis, keiner Geraden), genauso zwingt die Krümmung der Raumzeit die Erde auf ihre Bahn um die Sonne.

Die Quantenmechanik spielt für die Umlaufbahnen der Planeten keine Rolle. Sie beherrscht die Physik im Kleinen. Ort und Impuls eines Teilchens lassen sich als kom- plementäre Variable nicht gleichzeitig scharf messen, sind als Zufallsgrößen unscharf verschmiert. Die Schrödingergleichung beschreibt diese Unschärfen als Wellenfeld in Raum und Zeit. „Das Elektron trifft in zehn Minuten am Ort x ein.“ So ein Satz ist der Quantentheorie ganz unbekannt, wir sagen stattdessen: „In zehn Minuten ist das Elektron mit p(x)-prozentiger Wahrscheinlichkeit am Orte x.“

Den alten Streit um die Frage, ob es kleinste Teilchen gebe, oder die Welt aus einem stofflichen Kontinuum bestehe, beendet die Quantenmechanik mit einem salomonischen Urteil. Beides ist gleichermaßen wahr, und hängt von der Fragestellung ab. In dem einen Experiment enthüllt sich die Quantennatur der Welt: Angeregte Atome senden Lichtteilchen nur ganz bestimmter Farbe aus – das charakteristische Orange der Straßenlaternen kommt vom Natrium. Ein anderer Versuch zeigt die Kontinuumseigenschaften der Materie: Bei aufmerksamem Blick in eine Straßenlaterne kann man Beugungsringe sehen, wenn im Augapfel die Wellen des Natriumlichts an kleinen Hindernissen streuen.

Was hat das nun alles mit der Gravitation zu tun? Nach Einsteins allgemeiner Relativitätstheorie hat das Schwerefeld der Erde stets überall einen fest vorhersagbaren Wert. In der Quantenmechanik ist das nicht mehr so, hier gibt es nur mehr Wahrscheinlichkeitsaussagen. Es kann nicht beides stimmen; entweder es gibt echten Zufall, oder die Welt ist streng deterministisch. Außerdem folgt alle Materie der Quantentheorie, doch koppelt in immer gleicher Weise an die Gravitation. Damit müssen sich die Gesetze der Quantentheorie auch auf die Schwerkraft übertragen. Wie die Quantentheorie mit der Relativitätstheorie zu versöhnen sei, das weiß freilich niemand so genau. Trotz jahrzehntelanger, teils recht phantastischer Bemühungen, fehlt uns noch immer eine Theorie der Quantengravitation.

Was können wir von einer Quantentheorie der Gravitation erwarten? Zunächst müsste sie alle bisherigen experimentellen Tests bestehen. Sie muss uns aber auch Fragen beantworten, die über unser bisheriges Verständnis weit hinausgehen: Was geschah beim Urknall? Was sind die Quanten des Gravitationsfeldes? Ist vielleicht die Geometrie der Raumzeit selbst gequantelt, gibt es gleichsam kleinste Raumatome? Was geschieht im Inneren eines schwarzen Lochs?

Meine Doktorarbeit beschäftigt sich mit nur einem Ansatz, diese Fragen zu beantworten, mit der loop quantum gravity wie die Theorie auf Englisch heißt. An erster Stelle steht die Frage: Gelingt der Übergang zur bekannten Physik? Dafür braucht es geeignetes mathematisches Handwerkszeug. Meine Doktorarbeit entwickelt solches Werkzeug, und untersucht den klassischen Grenzfall der Theorie. Ich kann zeigen, dass die Schleifentheorie im klassischen Limes sich als Vielteilchentheorie deuten lässt. Die zugehörigen Punktteilchen bewegen sich allerdings nicht in Raum und Zeit, sondern leben in einem zweidimensionalen komplexen Vektorraum, im Raume der Spinoren.

==endquote==





0 commentaires:

Enregistrer un commentaire