I have a dipole such as:
[itex]\rho(\vec{r}) = q \delta(\vec{r} - \vec{a}) - q \delta(\vec{r} + \vec{a})[/itex]
with [itex]\vec{a} = a \vec{e}_x[/itex].
I have to show that the energy in a constant external field [itex]\vec{E}[/itex] is:
[itex]V = - 2 q \vec{a} \vec{E}[/itex]
My calculations so far:
With the formula: [itex]\phi(\vec{r}) = \frac{1}{4 \pi \epsilon_0} \int \! \rho(\vec{r}') \frac{1}{|\vec{r} - \vec{r}'|} \, d^3r' [/itex]
I have calculated for the potential:
[itex]\phi(\vec{r}) = \frac{q}{4 \pi \epsilon_0} (\frac{1}{|\vec{r} - \vec{a}|} - \frac{1}{|\vec{r} + \vec{a}|})[/itex]
The energy [itex]V(\vec{r}) = \phi(\vec{r}) q[/itex]
Thus I get for the energy:
[itex]V(\vec{r}) = \frac{q^2}{4 \pi \epsilon_0} (\frac{1}{|\vec{r} - \vec{a}|} - \frac{1}{|\vec{r} + \vec{a}|})[/itex]
However I don't understand why that is equal to [itex]-2q \vec{a} \vec{E}[/itex].
Any ideas?
[itex]\rho(\vec{r}) = q \delta(\vec{r} - \vec{a}) - q \delta(\vec{r} + \vec{a})[/itex]
with [itex]\vec{a} = a \vec{e}_x[/itex].
I have to show that the energy in a constant external field [itex]\vec{E}[/itex] is:
[itex]V = - 2 q \vec{a} \vec{E}[/itex]
My calculations so far:
With the formula: [itex]\phi(\vec{r}) = \frac{1}{4 \pi \epsilon_0} \int \! \rho(\vec{r}') \frac{1}{|\vec{r} - \vec{r}'|} \, d^3r' [/itex]
I have calculated for the potential:
[itex]\phi(\vec{r}) = \frac{q}{4 \pi \epsilon_0} (\frac{1}{|\vec{r} - \vec{a}|} - \frac{1}{|\vec{r} + \vec{a}|})[/itex]
The energy [itex]V(\vec{r}) = \phi(\vec{r}) q[/itex]
Thus I get for the energy:
[itex]V(\vec{r}) = \frac{q^2}{4 \pi \epsilon_0} (\frac{1}{|\vec{r} - \vec{a}|} - \frac{1}{|\vec{r} + \vec{a}|})[/itex]
However I don't understand why that is equal to [itex]-2q \vec{a} \vec{E}[/itex].
Any ideas?
0 commentaires:
Enregistrer un commentaire