Here's my attempt at this proof. Is this correct?
1. The problem statement, all variables and given/known data
Prove [itex]\frac{a}{b}[/itex][itex]/[/itex][itex]\frac{c}{d}[/itex] = [itex]\frac{ad}{bc}[/itex]
2. Relevant equations
P 1-12
3. The attempt at a solution
[itex]\frac{a}{b}[/itex][itex]/[/itex][itex]\frac{c}{d}[/itex] = [itex]\frac{ad}{bc}[/itex]
[itex]\frac{a}{b}[/itex][itex]/[/itex][itex]\frac{c}{d}[/itex] = (ad)(bc)[itex]^{-1}[/itex]
[itex]\frac{a}{b}[/itex][itex]/[/itex][itex]\frac{c}{d}[/itex] = (ad)(b[itex]^{-1}[/itex]c[itex]^{-1}[/itex])
[itex]\frac{a}{b}[/itex][itex]/[/itex][itex]\frac{c}{d}[/itex] = (ab[itex]^{-1}[/itex])(dc[itex]^{-1}[/itex])
[itex]\frac{a}{b}[/itex][itex]/[/itex][itex]\frac{c}{d}[/itex] = (ab[itex]^{-1}[/itex])(d[itex]^{-1}[/itex]c)[itex]^{-1}[/itex]
[itex]\frac{a}{b}[/itex][itex]/[/itex][itex]\frac{c}{d}[/itex] = [itex]\frac{a}{b}[/itex][itex]/[/itex][itex]\frac{c}{d}[/itex]
Also, do proofs have to be in if, then, hence form like they are when Spivak is presenting the basic properties of numbers?
1. The problem statement, all variables and given/known data
Prove [itex]\frac{a}{b}[/itex][itex]/[/itex][itex]\frac{c}{d}[/itex] = [itex]\frac{ad}{bc}[/itex]
2. Relevant equations
P 1-12
3. The attempt at a solution
[itex]\frac{a}{b}[/itex][itex]/[/itex][itex]\frac{c}{d}[/itex] = [itex]\frac{ad}{bc}[/itex]
[itex]\frac{a}{b}[/itex][itex]/[/itex][itex]\frac{c}{d}[/itex] = (ad)(bc)[itex]^{-1}[/itex]
[itex]\frac{a}{b}[/itex][itex]/[/itex][itex]\frac{c}{d}[/itex] = (ad)(b[itex]^{-1}[/itex]c[itex]^{-1}[/itex])
[itex]\frac{a}{b}[/itex][itex]/[/itex][itex]\frac{c}{d}[/itex] = (ab[itex]^{-1}[/itex])(dc[itex]^{-1}[/itex])
[itex]\frac{a}{b}[/itex][itex]/[/itex][itex]\frac{c}{d}[/itex] = (ab[itex]^{-1}[/itex])(d[itex]^{-1}[/itex]c)[itex]^{-1}[/itex]
[itex]\frac{a}{b}[/itex][itex]/[/itex][itex]\frac{c}{d}[/itex] = [itex]\frac{a}{b}[/itex][itex]/[/itex][itex]\frac{c}{d}[/itex]
Also, do proofs have to be in if, then, hence form like they are when Spivak is presenting the basic properties of numbers?
via Physics Forums RSS Feed http://www.physicsforums.com/showthread.php?t=720485&goto=newpost
0 commentaires:
Enregistrer un commentaire