Power Series Solution to Linear ODE

vendredi 29 novembre 2013

1. The problem statement, all variables and given/known data

Let y(x)=[itex]\sum[/itex]ckxk (k=0 to ∞) be a power series solution of



(x2-1)y''+x3y'+y=2x, y(0)=1, y'(0)=0



Note that x=0 is an ordinary point.



2. Relevant equations

y(x)=[itex]\sum[/itex]ckxk (k=0 to ∞)

y'(x)=[itex]\sum[/itex](kckxk-1) (k=1 to ∞)

y''(x)=[itex]\sum[/itex](k(k-1))ckxk-2 (k=2 to ∞)



3. The attempt at a solution



(x2-1)[itex]\sum[/itex](k(k-1))ckxk-2 (k=2 to ∞) +[itex]\sum[/itex](kckxk) (k=1 to ∞)+[itex]\sum[/itex]ckxk (k=0 to ∞) -2x=0



Making all the series start with the x3 term

2C2x0+[itex]\sum[/itex](k(k-1))ckxk (k=3 to ∞)- 2C2x0-6C3x1-12C4x2-[itex]\sum[/itex](k(k-1))ckxk-2 (k=5 to ∞) + [itex]\sum[/itex](kckxk+2) (k=1 to ∞)+C0x0+C1x1+C2x2+[itex]\sum[/itex]ckxk (k=3 to ∞)





2C2x0+[itex]\sum[/itex](n(n-1))cnxn (n=3 to ∞)- 2C2x0-6C3x1-12C4x2-[itex]\sum[/itex](n+2)(n+1))cn+2xn (n=3 to ∞) + [itex]\sum[/itex]((n-2)cn-2xn) (n=3 to ∞)+C0x0+C1x1+C2x2+[itex]\sum[/itex]cnxn (n=3 to ∞)







2C2x0-2C2x0-6C3x1-12C4x2+C0x0+C1x1+C2x2=0

c0=0

c3={c1-2}/{6}

c4={c2}/{12}



cn+2={n(n-1)cn+(n-2)cn-2+cn}/{(n+2)(n-1)} n=3,4,5...





I started with c5={(7c3+c1)}/{10}

but both of my c1 and c3 terms are tied up in the same equation, not really sure were to go from here






via Physics Forums RSS Feed http://www.physicsforums.com/showthread.php?t=725611&goto=newpost

0 commentaires:

Enregistrer un commentaire