1. The problem statement, all variables and given/known data
y''+6y=f(t), y(0)=0, y'(0)=-2
f(t)= t for 0≤t<1 and 0 for t≥1
2. Relevant equations
3. The attempt at a solution
L{y''}+6L{y}=L{t}-L{tμ(t-1)} where μ(t-1) is Unit Step
Y(s)=L{y}
sY(s)-y(0)=L{y'} and y(0)=0
s2Y(s)-sy(0)-y'(0)+6Y(s) where y(0)=0 and y'(0)=-2
LHS:
s2Y(s)+2+6Y(s)
Y(s)(s2+6)-2
RHS:
L{t}-L{tμ(t-1)}
L{t}=1/s2
L{tμ(t-1)}=L{(t-1)μ(t-1)+L{μ(t-1)}=e-s/s2+e-s/s
L{t}-L{tμ(t-1)}=1/s2-e-s/s2-e-s/s
Y(s)= -1/(s2+6) -e-s/(s2(s2+6))-e-s/s(s2+6)
taking the inverse laplace of the first term
-L-1{1/(s2+6)}=(-1/6)L-1{1/s}+(1/6)L-1{1/(s+6)}=(-1/6)+1/6e-6t)
how could I take the laplace of the other 2 terms?
I was thinking L-1{e-s/(s2(s2+6))}=y(t-1)μ(t-1)?
or I could just break it up into (1/6)L-1{1/s2}-(1/6)L-1{1/(s2+6)} which I know the inverse laplace transforms for, however when I do so I get
y(t)= (1/6)t-(1/6)+(1/6)e-6t
which seems a bit bizarre to me, I would have assumed that the answer would have a unit step function
Thank you for your time
y''+6y=f(t), y(0)=0, y'(0)=-2
f(t)= t for 0≤t<1 and 0 for t≥1
2. Relevant equations
3. The attempt at a solution
L{y''}+6L{y}=L{t}-L{tμ(t-1)} where μ(t-1) is Unit Step
Y(s)=L{y}
sY(s)-y(0)=L{y'} and y(0)=0
s2Y(s)-sy(0)-y'(0)+6Y(s) where y(0)=0 and y'(0)=-2
LHS:
s2Y(s)+2+6Y(s)
Y(s)(s2+6)-2
RHS:
L{t}-L{tμ(t-1)}
L{t}=1/s2
L{tμ(t-1)}=L{(t-1)μ(t-1)+L{μ(t-1)}=e-s/s2+e-s/s
L{t}-L{tμ(t-1)}=1/s2-e-s/s2-e-s/s
Y(s)= -1/(s2+6) -e-s/(s2(s2+6))-e-s/s(s2+6)
taking the inverse laplace of the first term
-L-1{1/(s2+6)}=(-1/6)L-1{1/s}+(1/6)L-1{1/(s+6)}=(-1/6)+1/6e-6t)
how could I take the laplace of the other 2 terms?
I was thinking L-1{e-s/(s2(s2+6))}=y(t-1)μ(t-1)?
or I could just break it up into (1/6)L-1{1/s2}-(1/6)L-1{1/(s2+6)} which I know the inverse laplace transforms for, however when I do so I get
y(t)= (1/6)t-(1/6)+(1/6)e-6t
which seems a bit bizarre to me, I would have assumed that the answer would have a unit step function
Thank you for your time
via Physics Forums RSS Feed http://www.physicsforums.com/showthread.php?t=725614&goto=newpost
0 commentaires:
Enregistrer un commentaire