Hello, I am trying to program a double pendulum via the 4th order Runge-Kutta method and I cannot seem to be getting the right output. At first I used the Euler-Cromer method, but now I am aiming to make it more accurate.
1. The problem statement, all variables and given/known data
I have the equations of motion: d(omega)/dt and d(theta)/dt = omega
2. Relevant equations
The Runge-Kutta method can be found here: http://en.wikipedia.org/wiki/Runge%E...3Kutta_methods
3. The attempt at a solution
for omega I tried the following:
k1=d(omega)/dt
k2=d(omega)/dt + 0.5*dt*k1
k3=d(omega)/dt + 0.5*dt*k2
k4=d(omega)/dt + 0.5*dt*k3
omega= omega_initial + (1/6)*dt*(k1 + 2*k2 + 2*k3 + k4)
and for theta:
k1=omega
k2=omega + 0.5*dt*k1
k3=omega + 0.5*dt*k2
k4=omega + 0.5*dt*k3
theta = theta_initial + (1/6)*dt*(k1 + 2*k2 + 2*k3 + k4)
1. The problem statement, all variables and given/known data
I have the equations of motion: d(omega)/dt and d(theta)/dt = omega
2. Relevant equations
The Runge-Kutta method can be found here: http://en.wikipedia.org/wiki/Runge%E...3Kutta_methods
3. The attempt at a solution
for omega I tried the following:
k1=d(omega)/dt
k2=d(omega)/dt + 0.5*dt*k1
k3=d(omega)/dt + 0.5*dt*k2
k4=d(omega)/dt + 0.5*dt*k3
omega= omega_initial + (1/6)*dt*(k1 + 2*k2 + 2*k3 + k4)
and for theta:
k1=omega
k2=omega + 0.5*dt*k1
k3=omega + 0.5*dt*k2
k4=omega + 0.5*dt*k3
theta = theta_initial + (1/6)*dt*(k1 + 2*k2 + 2*k3 + k4)
via Physics Forums RSS Feed http://www.physicsforums.com/showthread.php?t=725578&goto=newpost
0 commentaires:
Enregistrer un commentaire