I am reading Dummit and Foote: Section 15.2 Radicals and Affine Varieties.
On page 678, Proposition 16 reads as follows: (see attachment, page 678)
---------------------------------------------------------------------------------------
Proposition 16. Suppose [itex] \phi \ : \ V \longrightarrow W [/itex] is a morphism of algebraic sets and [itex] \widetilde{\phi} \ : \ k[W] \longrightarrow k[V] [/itex] is the associated k-algebra homomorphism of coordinate rings. Then
(1) the kernel of [itex] \widetilde{\phi} [/itex] is [itex] \mathcal{I} ( \phi (V) ) [/itex]
(2) etc etc ... ... ...
------------------------------------------------------------------------------------
[Note: For the definitions of [itex] \phi [/itex] and [itex] \widetilde{\phi} [/itex] see attachment page 662 ]
The beginning of the proof of Proposition 16 reads as follows:
-------------------------------------------------------------------------------------
Proof. Since [itex] \widetilde{\phi} = f \circ \phi [/itex] we have [itex] \widetilde{\phi}(f) = 0 [/itex] if and only if [itex] (f \circ \phi) (P) = 0 [/itex] for all [itex] P \in V [/itex] i.e. [itex] f(Q) = 0 [/itex] for all [itex] Q = \phi (P) \in \phi (V) [/itex]. which is the statement that [itex] f \in \mathcal{I} ( \phi ( V) ) [/itex] proving the first statement.
-------------------------------------------------------------------------------------
My problem concerns the first sentence of the proof above.
Basically I am trying to fully understand what is meant, both logically and notationally, by the following:
"Since [itex] \widetilde{\phi} = f \circ \phi [/itex] we have [itex] \widetilde{\phi}(f) = 0 [/itex] if and only if [itex] (f \circ \phi) (P) = 0 [/itex] for all [itex] P \in V [/itex]"
My interpretation of this statement is given below after I give the reader some key definitions.
Definitions
Definition of Morphism or Polynomial Mapping [itex] \phi [/itex]
Definition. A map [itex] \phi \ : V \rightarrow W [/itex] is called a morphism (or polynomial map or regular map) of algebraic sets if
there are polynomials [itex] {\phi}_1, {\phi}_2, .......... , {\phi}_m \in k[x_1, x_2, ... ... x_n] [/itex] such that
[itex] \phi(( a_1, a_2, ... a_n)) = ( {\phi}_1 ( a_1, a_2, ... a_n) , {\phi}_2 ( a_1, a_2, ... a_n), ... ... ... {\phi}_m ( a_1, a_2, ... a_n)) [/itex]
for all [itex] ( a_1, a_2, ... a_n) \in V [/itex]
Definition of [itex] \widetilde{\phi}[/itex]
[itex] \phi [/itex] induces a well defined map from the quotient ring [itex] k[x_1, x_2, ... ... x_n]/\mathcal{I}(W) [/itex]
to the quotient ring [itex] k[x_1, x_2, ... ... x_n]/\mathcal{I}(V) [/itex] :
[itex] \widetilde{\phi} \ : \ k[W] \rightarrow k[V] [/itex]
i.e [itex] k[x_1, x_2, ... ... x_n]/\mathcal{I}(W) \longrightarrow k[x_1, x_2, ... ... x_n]/\mathcal{I}(V) [/itex]
[itex] f \rightarrow f \circ \phi [/itex] i.e. [itex] \phi (F) = f \circ \phi [/itex]
Now, to repeat again for clarity, my problem is with the first line of the proof of Proposition 16 which reads:
"Since [itex] \widetilde{\phi} = f \circ \phi [/itex] we have [itex] \widetilde{\phi}(f) = 0 [/itex] if and only if [itex] f \circ \phi (P) = 0 [/itex] for all [itex] P \in V [/itex]"
My interpretation of this line is as follows:
[itex] \widetilde{\phi}(f) = 0 \Longrightarrow f \circ \phi (P) = 0 [/itex]
But [itex] f \circ \phi (P) = 0 [/itex] means that
[itex] f \circ \phi (P) = 0 + \mathcal{I}(V) [/itex]
so then [itex] f \circ \phi \in \mathcal{I}(V) [/itex]
Thus [itex] (f \circ \phi) (P) = 0 [/itex] for all points [itex] P = (a_1, a_2, ... ... , a_n \in V \subseteq \mathbb{A}^n [/itex]
Can someone confirm that my logic and interpretation is valid and acceptable, or not as the case may be - please point out any errors or weaknesses in the argument/proof.
I think some of my problems with Dummit and Foote are notational in nature
Any clarifying comments are really welcome.
Peter
On page 678, Proposition 16 reads as follows: (see attachment, page 678)
---------------------------------------------------------------------------------------
Proposition 16. Suppose [itex] \phi \ : \ V \longrightarrow W [/itex] is a morphism of algebraic sets and [itex] \widetilde{\phi} \ : \ k[W] \longrightarrow k[V] [/itex] is the associated k-algebra homomorphism of coordinate rings. Then
(1) the kernel of [itex] \widetilde{\phi} [/itex] is [itex] \mathcal{I} ( \phi (V) ) [/itex]
(2) etc etc ... ... ...
------------------------------------------------------------------------------------
[Note: For the definitions of [itex] \phi [/itex] and [itex] \widetilde{\phi} [/itex] see attachment page 662 ]
The beginning of the proof of Proposition 16 reads as follows:
-------------------------------------------------------------------------------------
Proof. Since [itex] \widetilde{\phi} = f \circ \phi [/itex] we have [itex] \widetilde{\phi}(f) = 0 [/itex] if and only if [itex] (f \circ \phi) (P) = 0 [/itex] for all [itex] P \in V [/itex] i.e. [itex] f(Q) = 0 [/itex] for all [itex] Q = \phi (P) \in \phi (V) [/itex]. which is the statement that [itex] f \in \mathcal{I} ( \phi ( V) ) [/itex] proving the first statement.
-------------------------------------------------------------------------------------
My problem concerns the first sentence of the proof above.
Basically I am trying to fully understand what is meant, both logically and notationally, by the following:
"Since [itex] \widetilde{\phi} = f \circ \phi [/itex] we have [itex] \widetilde{\phi}(f) = 0 [/itex] if and only if [itex] (f \circ \phi) (P) = 0 [/itex] for all [itex] P \in V [/itex]"
My interpretation of this statement is given below after I give the reader some key definitions.
Definitions
Definition of Morphism or Polynomial Mapping [itex] \phi [/itex]
Definition. A map [itex] \phi \ : V \rightarrow W [/itex] is called a morphism (or polynomial map or regular map) of algebraic sets if
there are polynomials [itex] {\phi}_1, {\phi}_2, .......... , {\phi}_m \in k[x_1, x_2, ... ... x_n] [/itex] such that
[itex] \phi(( a_1, a_2, ... a_n)) = ( {\phi}_1 ( a_1, a_2, ... a_n) , {\phi}_2 ( a_1, a_2, ... a_n), ... ... ... {\phi}_m ( a_1, a_2, ... a_n)) [/itex]
for all [itex] ( a_1, a_2, ... a_n) \in V [/itex]
Definition of [itex] \widetilde{\phi}[/itex]
[itex] \phi [/itex] induces a well defined map from the quotient ring [itex] k[x_1, x_2, ... ... x_n]/\mathcal{I}(W) [/itex]
to the quotient ring [itex] k[x_1, x_2, ... ... x_n]/\mathcal{I}(V) [/itex] :
[itex] \widetilde{\phi} \ : \ k[W] \rightarrow k[V] [/itex]
i.e [itex] k[x_1, x_2, ... ... x_n]/\mathcal{I}(W) \longrightarrow k[x_1, x_2, ... ... x_n]/\mathcal{I}(V) [/itex]
[itex] f \rightarrow f \circ \phi [/itex] i.e. [itex] \phi (F) = f \circ \phi [/itex]
Now, to repeat again for clarity, my problem is with the first line of the proof of Proposition 16 which reads:
"Since [itex] \widetilde{\phi} = f \circ \phi [/itex] we have [itex] \widetilde{\phi}(f) = 0 [/itex] if and only if [itex] f \circ \phi (P) = 0 [/itex] for all [itex] P \in V [/itex]"
My interpretation of this line is as follows:
[itex] \widetilde{\phi}(f) = 0 \Longrightarrow f \circ \phi (P) = 0 [/itex]
But [itex] f \circ \phi (P) = 0 [/itex] means that
[itex] f \circ \phi (P) = 0 + \mathcal{I}(V) [/itex]
so then [itex] f \circ \phi \in \mathcal{I}(V) [/itex]
Thus [itex] (f \circ \phi) (P) = 0 [/itex] for all points [itex] P = (a_1, a_2, ... ... , a_n \in V \subseteq \mathbb{A}^n [/itex]
Can someone confirm that my logic and interpretation is valid and acceptable, or not as the case may be - please point out any errors or weaknesses in the argument/proof.
I think some of my problems with Dummit and Foote are notational in nature
Any clarifying comments are really welcome.
Peter
via Physics Forums RSS Feed http://www.physicsforums.com/showthread.php?t=720537&goto=newpost
0 commentaires:
Enregistrer un commentaire