I just want to verify
For Polar coordinates, ##r^2=x^2+y^2## and ##x=r\cos \theta##, ##y=r\sin\theta##
##x(r,\theta)## and## y(r,\theta)## are not independent to each other like in rectangular.
In rectangular coordinates, ##\frac{\partial y}{\partial x}=\frac{dy}{dx}=0##
But in Polar coordinates,
[tex]\frac{\partial r}{\partial x}=\cos\theta,\;\frac{\partial \theta}{\partial x}=-\frac{\sin\theta}{r}[/tex]
[tex]\frac{\partial y(r,\theta)}{\partial x(r,\theta)}=\frac{\partial y(r,\theta)}{\partial r}\frac{\partial r}{\partial x(r,\theta)}+\frac{\partial y(r,\theta)}{\partial \theta}\frac{\partial \theta}{\partial x(r,\theta)}=
(\cos\theta) \frac{\partial y(r,\theta)}{\partial r}-\left(\frac{\sin\theta}{r}\right)\frac{\partial y(r,\theta)}{\partial \theta}[/tex]
Thanks
For Polar coordinates, ##r^2=x^2+y^2## and ##x=r\cos \theta##, ##y=r\sin\theta##
##x(r,\theta)## and## y(r,\theta)## are not independent to each other like in rectangular.
In rectangular coordinates, ##\frac{\partial y}{\partial x}=\frac{dy}{dx}=0##
But in Polar coordinates,
[tex]\frac{\partial r}{\partial x}=\cos\theta,\;\frac{\partial \theta}{\partial x}=-\frac{\sin\theta}{r}[/tex]
[tex]\frac{\partial y(r,\theta)}{\partial x(r,\theta)}=\frac{\partial y(r,\theta)}{\partial r}\frac{\partial r}{\partial x(r,\theta)}+\frac{\partial y(r,\theta)}{\partial \theta}\frac{\partial \theta}{\partial x(r,\theta)}=
(\cos\theta) \frac{\partial y(r,\theta)}{\partial r}-\left(\frac{\sin\theta}{r}\right)\frac{\partial y(r,\theta)}{\partial \theta}[/tex]
Thanks
via Physics Forums RSS Feed http://www.physicsforums.com/showthread.php?t=719664&goto=newpost
0 commentaires:
Enregistrer un commentaire