Dear PhysicsForum,
We have just treated the Dirac equation and its lagrangian during our QFT course, but we have only gone in depth in 3+1 dimensions.
My question is about what happens to spin in 2+1 dimensions. In 3+1 dimensions we have to use 4 by 4 gamma matrices, but in 2+1 dimensions we could use 2 by 2 gamma matrices, so would this imply two 'degrees of freedom' instead of four? I tried to calculate this by myself and I found out that you still have particles and anti-particles and you also have spin up and spin down. However, particles are always associated with spin up and anti-particles with spin down. Is this correct?
And what happens to spin in different dimensions? In 1+1 dimensions, for example, is there spin at all? Or what happens for higher dimensions than 3+1?
Regards,
Troy
We have just treated the Dirac equation and its lagrangian during our QFT course, but we have only gone in depth in 3+1 dimensions.
My question is about what happens to spin in 2+1 dimensions. In 3+1 dimensions we have to use 4 by 4 gamma matrices, but in 2+1 dimensions we could use 2 by 2 gamma matrices, so would this imply two 'degrees of freedom' instead of four? I tried to calculate this by myself and I found out that you still have particles and anti-particles and you also have spin up and spin down. However, particles are always associated with spin up and anti-particles with spin down. Is this correct?
And what happens to spin in different dimensions? In 1+1 dimensions, for example, is there spin at all? Or what happens for higher dimensions than 3+1?
Regards,
Troy
via Physics Forums RSS Feed http://www.physicsforums.com/showthread.php?t=720099&goto=newpost
0 commentaires:
Enregistrer un commentaire