Coefficients of Modular Forms

mercredi 30 octobre 2013

Given:



[tex] f\left(\frac{az + b}{cz + d}\right) = (cz + d)^kf(z)[/tex]



We can apply:



[tex]\left( \begin{array}{cc}

a & b \\

c & d\\

\end{array} \right)

= \left( \begin{array}{cc}

1 & 1 \\

0 & 1 \\

\end{array} \right)[/tex]



So that we arrive at the periodicity [itex] f(z+1) = f(z) [/itex]. This implies a Fourier expansion:



[tex]f(z) = \sum_{n=0}^{\infty}c_nq^n[/tex]

Where [itex]q = e^{2{\pi}inz}[/itex]



But how to calculate the coefficients [itex]c_n[/itex]? Scouring all over the internet, I've seen mention of contour integration and parametrizing along the Half-Plane, but I'm not even sure of the form of the integrand. Ideas would be most appreciated.






via Physics Forums RSS Feed http://www.physicsforums.com/showthread.php?t=719849&goto=newpost

0 commentaires:

Enregistrer un commentaire