1. The problem statement, all variables and given/known data
[itex]f(x,y)=6a^{-5}xy^{2}[/itex] [itex]0≤x≤a[/itex] and [itex]0≤y≤a[/itex], [itex]0[/itex] elsewhere
Show that [itex]\overline{xy}=\overline{x}.\overline{y}[/itex]
2. Relevant equations
[itex]\overline{x}=\int^{∞}_{-∞}{x.f(x)dx}[/itex]
3. The attempt at a solution
[itex]\overline{x}=\int^{∞}_{-∞}{x.f(x)dx}[/itex]
[itex]=\int^{a}_{0}{x.6a^{-5}xy^{2}dx}[/itex]
[itex]=6a^{-5}\int^{a}_{0}{x^{2}y^{2}dx}[/itex]
[itex]=6a^{-5}[/itex][itex]\frac{1}{3}a^{3}y^{2}[/itex]
[itex]=2a^{-2}y^{2}[/itex]
Following the same proccess I get [itex]\overline{y}=\frac{3}{2}a^{-1}x^{2}[/itex]
But when it comes to [itex]\overline{xy}[/itex] I'm not really sure how to approach it
[itex]f(x,y)=6a^{-5}xy^{2}[/itex] [itex]0≤x≤a[/itex] and [itex]0≤y≤a[/itex], [itex]0[/itex] elsewhere
Show that [itex]\overline{xy}=\overline{x}.\overline{y}[/itex]
2. Relevant equations
[itex]\overline{x}=\int^{∞}_{-∞}{x.f(x)dx}[/itex]
3. The attempt at a solution
[itex]\overline{x}=\int^{∞}_{-∞}{x.f(x)dx}[/itex]
[itex]=\int^{a}_{0}{x.6a^{-5}xy^{2}dx}[/itex]
[itex]=6a^{-5}\int^{a}_{0}{x^{2}y^{2}dx}[/itex]
[itex]=6a^{-5}[/itex][itex]\frac{1}{3}a^{3}y^{2}[/itex]
[itex]=2a^{-2}y^{2}[/itex]
Following the same proccess I get [itex]\overline{y}=\frac{3}{2}a^{-1}x^{2}[/itex]
But when it comes to [itex]\overline{xy}[/itex] I'm not really sure how to approach it
via Physics Forums RSS Feed http://www.physicsforums.com/showthread.php?t=707684&goto=newpost
0 commentaires:
Enregistrer un commentaire