1. The problem statement, all variables and given/known data
2. Relevant equations
Coulomb's Law
3. The attempt at a solution
Here are 2 different possibilities I drew that I think will have the x component vectors and y component vectors cancel out, but I think there may be some other positions as well.
##\textbf{F}_x = k_e [\frac{(1.0 \textrm{ uC} \cdot q3) \cdot cos(\theta_1) \cdot \hat{r}_{13}}{{r_1}^2} + \frac{(-3.0 \textrm{ uC} \cdot q3) \cdot cos(\theta_2) \cdot \hat{r}_{23}}{{r_2}^2}]##
##\textbf{F}_y = k_e [\frac{(1.0 \textrm{ uC} \cdot q3) \cdot sin(\theta_1) \cdot \hat{r}_{13}}{{r_1}^2} + \frac{(-3.0 \textrm{ uC} \cdot q3) \cdot sin(\theta_2) \cdot \hat{r}_{23}}{{r_2}^2}]##
But there are so many unknowns and I only have one equation (Coulomb's) so I'm not sure what to do from here.
2. Relevant equations
Coulomb's Law
3. The attempt at a solution
Here are 2 different possibilities I drew that I think will have the x component vectors and y component vectors cancel out, but I think there may be some other positions as well.
##\textbf{F}_x = k_e [\frac{(1.0 \textrm{ uC} \cdot q3) \cdot cos(\theta_1) \cdot \hat{r}_{13}}{{r_1}^2} + \frac{(-3.0 \textrm{ uC} \cdot q3) \cdot cos(\theta_2) \cdot \hat{r}_{23}}{{r_2}^2}]##
##\textbf{F}_y = k_e [\frac{(1.0 \textrm{ uC} \cdot q3) \cdot sin(\theta_1) \cdot \hat{r}_{13}}{{r_1}^2} + \frac{(-3.0 \textrm{ uC} \cdot q3) \cdot sin(\theta_2) \cdot \hat{r}_{23}}{{r_2}^2}]##
But there are so many unknowns and I only have one equation (Coulomb's) so I'm not sure what to do from here.
via Physics Forums RSS Feed http://www.physicsforums.com/showthread.php?t=707950&goto=newpost
0 commentaires:
Enregistrer un commentaire