1. The problem statement, all variables and given/known data
A ship goes from A to B at [tex] v_1=10 km/h [/tex] and from B to A at [tex] v_2=16 km/h [/tex] Find: (1) the average velocity of the ship, and (2) the velocity of the river current.
2. Relevant equations
[tex] v_{avg}=(v_1+v_2)/2 [/tex]
[tex] v_{AC}=v_{AB}+v_{BC} [/tex]
3. The attempt at a solution
[tex] v_{Boat}-v_{Current}=10km/h [/tex]
[tex] v_{Boat}+v_{Current}=16km/h [/tex]
[tex] v_{Boat}=13km/h, v_{Current}=3km/h [/tex]
The actual answer for [tex] v_{Boat}=12.3km/h [/tex] Why is that?
A ship goes from A to B at [tex] v_1=10 km/h [/tex] and from B to A at [tex] v_2=16 km/h [/tex] Find: (1) the average velocity of the ship, and (2) the velocity of the river current.
2. Relevant equations
[tex] v_{avg}=(v_1+v_2)/2 [/tex]
[tex] v_{AC}=v_{AB}+v_{BC} [/tex]
3. The attempt at a solution
[tex] v_{Boat}-v_{Current}=10km/h [/tex]
[tex] v_{Boat}+v_{Current}=16km/h [/tex]
[tex] v_{Boat}=13km/h, v_{Current}=3km/h [/tex]
The actual answer for [tex] v_{Boat}=12.3km/h [/tex] Why is that?
0 commentaires:
Enregistrer un commentaire