Transpose Inverse Property (Dual Vectors)

vendredi 19 septembre 2014

Hello,



While studying dual vectors in general relativity, it was written as we all know that dual vectors (under Lorentz Transformation) transform as follows:



[itex]\tilde{u}[/itex][itex]_{a}[/itex] = [itex]\Lambda[/itex][itex]^{b}_{a}[/itex]μ[itex]_{b}[/itex]



where [itex]\Lambda[/itex][itex]^{b}_{a}[/itex]= η[itex]_{ac}[/itex]L[itex]^{c}[/itex][itex]_{d}[/itex]η[itex]^{db}[/itex]



I was wondering if one can prove the latter or we take it as is.



This to a certain extend can be related to [itex]\Lambda[/itex] = ηLη[itex]^{-1}[/itex], so is it that they took this relation and placed indices in a way if they are summed over we get [itex]\Lambda[/itex][itex]^{b}_{a}[/itex]? Or is there any clearer procedure?



Thanks!





0 commentaires:

Enregistrer un commentaire