1. The problem statement, all variables and given/known data
Hello!
English is not my native language so I hope the terminology is right.
Q:
Find the volume generated by the curve y=1/x+2, positive x- and y-axis and the line x=1.
Calculate the volume obtained by rotation around the:
a) x-axis
b) y-axis
2. Relevant equations
The text book use this one:
[tex]Vx= \pi \int_{a}^{b}(f(x))^{2} dx[/tex]
3. The attempt at a solution
a) I got this one right:
[tex]Vx = \pi \int_{0}^{1}\frac{1}{(x+2)^{2}} dy= \pi \left[ -\frac{1}{x+2} \right]= \pi(\frac{1}{3} - \frac{1}{2}) = \frac{\pi}{6}[/tex]
b) I can't get this straight and I'm not sure about the upper-/lower-limits:
[tex] y(1)= \frac{1}{1+2}=\frac{1}{3}\\y(0)=\frac{1}{0+2}=\frac{1}{2}.[/tex]
X as a function of y:
[tex]x(y)=\frac{1}{y}-2[/tex]
We have:
[tex]x(y)=\frac{1}{y}-2\\Vy = \pi \int_{1/2}^{1/3}(\frac{1}{y}-2)^{2} dy = 4\pi \left[y-\frac{1}{4y}-lny \right] = 4\pi ((\frac{1}{2}-\frac{1}{2}-ln\frac{1}{2}) - (\frac{1}{3}-\frac{3}{4}-ln\frac{1}{3}))=\\= 4\pi (-\frac{1}{3}+\frac{3}{4}+ln\frac{1}{3}-ln\frac{1}{2}) = 4\pi (\frac{5}{12}+ln\frac{2}{3}) [/tex]
Stock here! I have tested the limits 0 to 1, 0 to 1/3 och 1/3 to ½. Anybody have any clue?
The answer is:
[tex]4\pi (\frac{1}{2}+ ln\frac{2}{3}) v.e[/tex]
Hello!
English is not my native language so I hope the terminology is right.
Q:
Find the volume generated by the curve y=1/x+2, positive x- and y-axis and the line x=1.
Calculate the volume obtained by rotation around the:
a) x-axis
b) y-axis
2. Relevant equations
The text book use this one:
[tex]Vx= \pi \int_{a}^{b}(f(x))^{2} dx[/tex]
3. The attempt at a solution
a) I got this one right:
[tex]Vx = \pi \int_{0}^{1}\frac{1}{(x+2)^{2}} dy= \pi \left[ -\frac{1}{x+2} \right]= \pi(\frac{1}{3} - \frac{1}{2}) = \frac{\pi}{6}[/tex]
b) I can't get this straight and I'm not sure about the upper-/lower-limits:
[tex] y(1)= \frac{1}{1+2}=\frac{1}{3}\\y(0)=\frac{1}{0+2}=\frac{1}{2}.[/tex]
X as a function of y:
[tex]x(y)=\frac{1}{y}-2[/tex]
We have:
[tex]x(y)=\frac{1}{y}-2\\Vy = \pi \int_{1/2}^{1/3}(\frac{1}{y}-2)^{2} dy = 4\pi \left[y-\frac{1}{4y}-lny \right] = 4\pi ((\frac{1}{2}-\frac{1}{2}-ln\frac{1}{2}) - (\frac{1}{3}-\frac{3}{4}-ln\frac{1}{3}))=\\= 4\pi (-\frac{1}{3}+\frac{3}{4}+ln\frac{1}{3}-ln\frac{1}{2}) = 4\pi (\frac{5}{12}+ln\frac{2}{3}) [/tex]
Stock here! I have tested the limits 0 to 1, 0 to 1/3 och 1/3 to ½. Anybody have any clue?
The answer is:
Spoiler
[tex]4\pi (\frac{1}{2}+ ln\frac{2}{3}) v.e[/tex]
0 commentaires:
Enregistrer un commentaire