Principal value

samedi 31 mai 2014

Hello.

Can someone please check if I got the answer right? I don't have the right answers for my exercise so I need someone to check it for me, please.



Please find the principle value of (1+i)^-i



My attempt:

√2^(- i) = (e^ln√2)^(- i) = e^-i•ln√2

          = cos(- ln√2) + i•sin(- ln√2)

          = cos(ln√2) - i•sin(ln√2)





      (1 + i) = √2[(1/√2) + i(1/√2)]

          = √2[cos(π/4) + isin(π/4)]

          = √2•e^i(π/4)





(1 + i)^(- i) = [√2•e^i(π/4)]^(- i)

       =[e^(π/4)] [√2^(- i)]

       =[e^(π/4)][cos(ln√2) - i•sin(ln√2)]





Therefore (1 + i)^(- i) = [e^(π/4)][cos(ln√2) - i•sin(ln√2)]





0 commentaires:

Enregistrer un commentaire