The period for small oscillations of a system

vendredi 30 mai 2014

1. The problem statement, all variables and given/known data



See picture :









2. Relevant equations



##\sum M_{O}=I_{O}\ddot{\theta }##







3. The attempt at a solution



Consider the free-body diagram associated with an arbitrary positive angular displacement ##\theta##; The moment about point ##O## is given by



##\sum M_{O}=-k\left ( b\sin\theta \right )\left ( b\cos\theta \right )-k\left ( 2b\sin\theta \right )\left ( 2b\cos\theta \right )-\underbrace{\left ( 3mgb\sin\theta \right )\left ( 3b\cos\theta \right )}_{\mathit{Why \ shouldn't \ this \ be \ included?}}##



Further, by the parallel axis theorem, ##I_{0}=\overline{I}+md^2=0+m(3b)^2=9mb^2## and for small oscillations ##\sin\theta\simeq \theta \ \ \wedge \cos\theta\simeq 1## and ##\tau =\frac{2\pi}{\omega _{n}}=2\pi\sqrt{\frac{m}{k}}##. BUT why does not the mass of the sphere contribute to the moment?





0 commentaires:

Enregistrer un commentaire