Lossless Transmission Line

jeudi 29 mai 2014

1. The problem statement, all variables and given/known data



A lossless transmission line with



characteristic impedance Z0 = 50Ω , β = 5∏x10-3,

and length l =80 meters, is terminated into a load ZL = 80Ω. The transmission line is powered by a source with 120 V and ZG = 12 Ω. Calculate the load voltage.







2. Relevant equations



V(z) = V+(e-jβz + [itex]\Gamma[/itex]ejβz



[itex]\Gamma[/itex] = (ZL - Z0)/(ZL + Z0)



Zinput = Z0(ZL+Z0tanh(jβL))/(Z0+ZLtanh(jβL))



V+ = VGZinput/((eL +[itex]\Gamma[/itex]e-jβL )(Zinput+ZG))



3. The attempt at a solution



[itex]\Gamma[/itex] = (80-50)/(80+50) = 3/13



Zinput = 50(80+50tanh(j*.4*pi)/(50+80tanh(j*.4*pi)



I can't find the input independence because my calculator can't evaluate the imaginary argument in the tanh function. I also have to same problem with solving for V+ and the imaginary exponents in the denominator. Does anyone know a way around this, or am I completely doing the wrong thing here?





0 commentaires:

Enregistrer un commentaire