Paritial derivative.

mardi 1 octobre 2013

1. The problem statement, all variables and given/known data



Verify if ##t=\lambda x## then ##x^2\frac{\partial^2 y}{\partial x^2} = t^2\frac{\partial^2 y}{\partial t^2}##



3. The attempt at a solution



[tex]t=\lambda x\;\Rightarrow\; \frac{\partial t}{\partial x}=\lambda[/tex]

[tex]\frac{\partial y}{\partial x} = \frac{\partial y}{\partial t}\frac{\partial t}{\partial x}= \lambda\;\frac{\partial y}{\partial t}[/tex]

[tex]\frac{\partial^2 y}{\partial x^2}=\lambda \frac{\partial^2 y}{\partial t^2} \frac{\partial t}{\partial x}=\lambda^2\frac{\partial^2 y}{\partial t^2}[/tex]



[tex]x^2\frac{\partial^2 y}{\partial x^2}=\frac{t^2}{\lambda^2}\lambda^2\frac{\partial^2 y}{\partial t^2}\;\Rightarrow\;x^2\frac{\partial^2 y}{\partial x^2} = t^2\frac{\partial^2 y}{\partial t^2}[/tex]



Am I correct?



Thanks






via Physics Forums RSS Feed http://www.physicsforums.com/showthread.php?t=713672&goto=newpost

0 commentaires:

Enregistrer un commentaire