Finding the radian value of this angle which passes through a point

mardi 29 octobre 2013

1. The problem statement, all variables and given/known data

The terminal arm of an angle in standard position passes through (-7,8). Find the radian value of the angle in the interval [0,2∏], to the nearest hundredth.





2. Relevant equations

sinθ = [itex]\frac{y}{r}[/itex]

cosθ = [itex]\frac{x}{r}[/itex]

tanθ = [itex]\frac{y}{x}[/itex]




3. The attempt at a solution

The terminal arm is in quadrant 2, and I found the side lengths to be -7,8, and [itex]\sqrt{113}[/itex] (hypotenuse). When I tried to find the value of θ I get different answers for different ratios.



θ = sin[itex]^{-1}[/itex][itex]\frac{8}{\sqrt{113}}[/itex]
= 0.85

θ = cos[itex]^{-1}[/itex][itex]\frac{-7}{\sqrt{113}}[/itex]
= 2.29

θ = tan[itex]^{-1}[/itex][itex]\frac{8}{-7}[/itex]
= -0.85

The correct one is θ=2.29. Why is this correct and not the others?






via Physics Forums RSS Feed http://www.physicsforums.com/showthread.php?t=719639&goto=newpost

0 commentaires:

Enregistrer un commentaire