1. The problem statement, all variables and given/known data
Schroedinger equation for potential barrier.
What if #V_0=E##
First region. Particles are free.
##\psi_1(x)=Ae^{ikx}+Be^{-ikx}##
In third region
##\psi_3(x)=Ce^{ikx}##
2. Relevant equations
##\frac{d^2\psi}{dx^2}+\frac{2m}{\hbar^2}(V_0-E)\psi=0##
where ##V_0## is height of barrier.
For region II
3. The attempt at a solution
In second region
##\frac{d^2 \psi}{dx^2}=0##
from that
##\frac{d\psi}{dx}=C_1##
##\psi(x)=C_1x+C_2##
Boundary condition
##A+B=C_2##
##C_1a+C_2=Ce^{ika}##
##ikA-ikB=C_1##
##C_1=ikCe^{ika}##
System 4x4
Is this correct?
Could you tell me in this case do I have bond state?
Schroedinger equation for potential barrier.
What if #V_0=E##
First region. Particles are free.
##\psi_1(x)=Ae^{ikx}+Be^{-ikx}##
In third region
##\psi_3(x)=Ce^{ikx}##
2. Relevant equations
##\frac{d^2\psi}{dx^2}+\frac{2m}{\hbar^2}(V_0-E)\psi=0##
where ##V_0## is height of barrier.
For region II
3. The attempt at a solution
In second region
##\frac{d^2 \psi}{dx^2}=0##
from that
##\frac{d\psi}{dx}=C_1##
##\psi(x)=C_1x+C_2##
Boundary condition
##A+B=C_2##
##C_1a+C_2=Ce^{ika}##
##ikA-ikB=C_1##
##C_1=ikCe^{ika}##
System 4x4
Is this correct?
Could you tell me in this case do I have bond state?
0 commentaires:
Enregistrer un commentaire