Entanglement and Simultaneity

lundi 31 mars 2014

Instantaneous action-at-a-distance (which is how we explain quantum entanglement) implies event-simultaneity, but we know (from SR) that an observer's "now" is dependent upon their velocity/reference frame.



Imagine that we have two observers, Scott and Sean, and two entangled particles. Scott and the two particles are onboard a starship while Sean is inside a nearby space station. Scott and the two entangled particles aboard the starship are moving through space at 99% of c, while Sean's space station is in a low geosynchronous orbit around the Earth (moving only slightly faster than the Earth's rotational speed; i.e., nowhere near c). Scott's starship quickly flies past Sean's space station. As they fly past each other, Scott remains at rest relative to the entangled particles, but Sean is in motion (at near light speed) relative to the entangled particles. As Scott flies past Sean, Scott checks the spin of one of the entangled particles, thereby "instantaneously" determining the spin of its entangled partner-particle, and Sean witnesses the events during the fly-by. Does the action-at-a-distance between the two entangled particles appear to be instantaneous to BOTH Scott AND Sean?





0 commentaires:

Enregistrer un commentaire