Hi, I'm wondering if I have the most direct solution for this integral or if there is a more efficient way of solving this. I haven't seen a double substitution deployed on one of these problems yet, so I thought perhaps this was not necessary.
1. The problem statement, all variables and given/known data
Using the substitution t = tan x, or otherwise, evaluate:
[itex]\int^{\frac{\pi}{3}}_{0} \frac{1}{9 - 8sin^2x} dx[/itex]
2. Relevant equations
3. The attempt at a solution
[itex]\int^{\frac{\pi}{3}}_{0} \frac{1}{9 - 8sin^2x} dx[/itex]
[itex]= \int^{\frac{\pi}{3}}_{0} \frac{1}{1 + 8cos^2x} dx[/itex]
[itex]= \int^{\frac{\pi}{3}}_{0} \frac{1}{4cos2x + 5} dx[/itex]
[itex]let\ t = tanx[/itex]
[itex]cos2x = \frac{1 - t^2}{1 + t^2}[/itex] (trig identity)
[itex]so \int^{\frac{\pi}{3}}_{0} \frac{1}{4cos2x + 5} dx[/itex] [itex]= \int^{\frac{\pi}{3}}_{0} \frac{1}{4(\frac{1 - t^2}{1 + t^2}) + 5} dx[/itex]
[itex]= \int^{\frac{\pi}{3}}_{0} \frac{1 + t^2}{t^2 +9} dx[/itex]
[itex]= \int^{\frac{\pi}{3}}_{0} \frac{sec^2x}{tan^2x +9} dx[/itex]
[itex] t = tanx → dt = sec^2x\ dx[/itex]
[itex]so \int^{\frac{\pi}{3}}_{0} \frac{sec^2x}{tan^2x + 9} dx[/itex] [itex]= \int^{\sqrt 3}_{0} \frac{1}{t^2 +9} dt[/itex]
[itex]let\ t = 3tanθ[/itex] [itex]so\ dt = 3sec^2θ\ dθ[/itex]
[itex]so \int^{\sqrt 3}_{0} \frac{1}{t^2 +9} dt[/itex] [itex]= \int^{atan\frac{1}{\sqrt 3}}_{0} \frac{3sec^2θ}{9tan^2θ +9} dθ[/itex]
[itex]= \int^{π/6}_{0} \frac{3sec^2θ}{9sec^2θ} dθ[/itex]
[itex]= \int^{π/6}_{0} \frac{3}{9} dθ[/itex]
[itex]= \frac{π}{18}[/itex]
1. The problem statement, all variables and given/known data
Using the substitution t = tan x, or otherwise, evaluate:
[itex]\int^{\frac{\pi}{3}}_{0} \frac{1}{9 - 8sin^2x} dx[/itex]
2. Relevant equations
3. The attempt at a solution
[itex]\int^{\frac{\pi}{3}}_{0} \frac{1}{9 - 8sin^2x} dx[/itex]
[itex]= \int^{\frac{\pi}{3}}_{0} \frac{1}{1 + 8cos^2x} dx[/itex]
[itex]= \int^{\frac{\pi}{3}}_{0} \frac{1}{4cos2x + 5} dx[/itex]
[itex]let\ t = tanx[/itex]
[itex]cos2x = \frac{1 - t^2}{1 + t^2}[/itex] (trig identity)
[itex]so \int^{\frac{\pi}{3}}_{0} \frac{1}{4cos2x + 5} dx[/itex] [itex]= \int^{\frac{\pi}{3}}_{0} \frac{1}{4(\frac{1 - t^2}{1 + t^2}) + 5} dx[/itex]
[itex]= \int^{\frac{\pi}{3}}_{0} \frac{1 + t^2}{t^2 +9} dx[/itex]
[itex]= \int^{\frac{\pi}{3}}_{0} \frac{sec^2x}{tan^2x +9} dx[/itex]
[itex] t = tanx → dt = sec^2x\ dx[/itex]
[itex]so \int^{\frac{\pi}{3}}_{0} \frac{sec^2x}{tan^2x + 9} dx[/itex] [itex]= \int^{\sqrt 3}_{0} \frac{1}{t^2 +9} dt[/itex]
[itex]let\ t = 3tanθ[/itex] [itex]so\ dt = 3sec^2θ\ dθ[/itex]
[itex]so \int^{\sqrt 3}_{0} \frac{1}{t^2 +9} dt[/itex] [itex]= \int^{atan\frac{1}{\sqrt 3}}_{0} \frac{3sec^2θ}{9tan^2θ +9} dθ[/itex]
[itex]= \int^{π/6}_{0} \frac{3sec^2θ}{9sec^2θ} dθ[/itex]
[itex]= \int^{π/6}_{0} \frac{3}{9} dθ[/itex]
[itex]= \frac{π}{18}[/itex]
0 commentaires:
Enregistrer un commentaire