Alternative Proof to show any integer multiplied with 0 is 0

vendredi 31 janvier 2014

In his book, Spivak did the proof by using the distributive property of integer. I am wondering if this, I think, simpler proof will also work. I want to show that ##a \cdot 0 = 0## for all ##a## using only the very basic property (no negative multiplication yet).



For all ##a \in \mathbb{Z}##, ##a+0=a##.



We just multiply ##a## again to get ##a^2+(a \cdot 0) = a^2##. Then it follows ##a \cdot 0 = 0##. (I remove ##a^2## by adding the additive inverse of it on both side)





0 commentaires:

Enregistrer un commentaire