Find an equation of the tangent line at the given point on the curve

mercredi 1 janvier 2014

Given the parametric equations, find an equation of the tangent line at the given point on the curve.





1. The problem statement, all variables and given/known data



Find an equation of the tangent line at each given point on the curve:





x = 2cotΘ and y=2sin[itex]^{2}θ[/itex] at point ([itex]\frac{-2}{\sqrt{3}}[/itex],[itex]\frac{3}{2})[/itex]







2. Relevant equations



dy/dx = dy/dθ/dx/dθ



3. The attempt at a solution



[itex]\frac{-2}{\sqrt{3}} = 2cotθ[/itex] and [itex]\frac{3}{2}=2sin^{2}θ[/itex]



[itex]\frac{-1}{\sqrt{3}}=\frac{cosθ}{sinθ



}[/itex] and [itex]\frac{\sqrt{3}}{2}=sinθ[/itex]



letting θ = [itex]\frac{2\pi}{3}[/itex] for each function yields the point ([itex]\frac{-2}{\sqrt{3}}[/itex],[itex]\frac{3}{2})[/itex]





dy/dx = [itex]\frac{dy/dθ}{dx/dθ}[/itex] = [itex](\frac{2sin^{2}θ}{2cotθ})'[/itex]



= [itex]-2sin^{3}θcosθ[/itex]



at θ= [itex]\frac{2\pi}{3}[/itex]



slope of tangent = 9/8



so m = (y-y)/(x-x)



9/8 = [itex]\frac{(y-\frac{3}{2}}{x-(-\frac{-2}{\sqrt{3}}}[/itex]



y = [itex]\frac{9}{8} + 15/4[/itex]





Answer doesn't match. I must have made a mistake somewhere.





0 commentaires:

Enregistrer un commentaire