Given the parametric equations, find an equation of the tangent line at the given point on the curve.
1. The problem statement, all variables and given/known data
Find an equation of the tangent line at each given point on the curve:
x = 2cotΘ and y=2sin[itex]^{2}θ[/itex] at point ([itex]\frac{-2}{\sqrt{3}}[/itex],[itex]\frac{3}{2})[/itex]
2. Relevant equations
dy/dx = dy/dθ/dx/dθ
3. The attempt at a solution
[itex]\frac{-2}{\sqrt{3}} = 2cotθ[/itex] and [itex]\frac{3}{2}=2sin^{2}θ[/itex]
[itex]\frac{-1}{\sqrt{3}}=\frac{cosθ}{sinθ
}[/itex] and [itex]\frac{\sqrt{3}}{2}=sinθ[/itex]
letting θ = [itex]\frac{2\pi}{3}[/itex] for each function yields the point ([itex]\frac{-2}{\sqrt{3}}[/itex],[itex]\frac{3}{2})[/itex]
dy/dx = [itex]\frac{dy/dθ}{dx/dθ}[/itex] = [itex](\frac{2sin^{2}θ}{2cotθ})'[/itex]
= [itex]-2sin^{3}θcosθ[/itex]
at θ= [itex]\frac{2\pi}{3}[/itex]
slope of tangent = 9/8
so m = (y-y)/(x-x)
9/8 = [itex]\frac{(y-\frac{3}{2}}{x-(-\frac{-2}{\sqrt{3}}}[/itex]
y = [itex]\frac{9}{8} + 15/4[/itex]
Answer doesn't match. I must have made a mistake somewhere.
1. The problem statement, all variables and given/known data
Find an equation of the tangent line at each given point on the curve:
x = 2cotΘ and y=2sin[itex]^{2}θ[/itex] at point ([itex]\frac{-2}{\sqrt{3}}[/itex],[itex]\frac{3}{2})[/itex]
2. Relevant equations
dy/dx = dy/dθ/dx/dθ
3. The attempt at a solution
[itex]\frac{-2}{\sqrt{3}} = 2cotθ[/itex] and [itex]\frac{3}{2}=2sin^{2}θ[/itex]
[itex]\frac{-1}{\sqrt{3}}=\frac{cosθ}{sinθ
}[/itex] and [itex]\frac{\sqrt{3}}{2}=sinθ[/itex]
letting θ = [itex]\frac{2\pi}{3}[/itex] for each function yields the point ([itex]\frac{-2}{\sqrt{3}}[/itex],[itex]\frac{3}{2})[/itex]
dy/dx = [itex]\frac{dy/dθ}{dx/dθ}[/itex] = [itex](\frac{2sin^{2}θ}{2cotθ})'[/itex]
= [itex]-2sin^{3}θcosθ[/itex]
at θ= [itex]\frac{2\pi}{3}[/itex]
slope of tangent = 9/8
so m = (y-y)/(x-x)
9/8 = [itex]\frac{(y-\frac{3}{2}}{x-(-\frac{-2}{\sqrt{3}}}[/itex]
y = [itex]\frac{9}{8} + 15/4[/itex]
Answer doesn't match. I must have made a mistake somewhere.
0 commentaires:
Enregistrer un commentaire