de Moivre's theorem

mercredi 29 janvier 2014

1. The problem statement, all variables and given/known data

Use de Moivre's Theorem to derive an expression in terms of sines and cosines for sin 3x and cos 3x.

Hence deduce that ##\tan 3x=\frac{3\tan x-\tan^3 x}{1-3\tan^2 x}##



Use the result above to solve the equation ##t^{3}-3t^{2} -3t+1=0



2. Relevant equations

de Moivre's theorem





3. The attempt at a solution

I have compared the real and imaginary parts of ##(cos 3x+ i sin x)## with ##(cos x+i sin x)^{3}##

Then ##cos 3x=cos^3 x-3 cos x sin^2 x## and ##sin 3x=3cos^2 x sin x-sin^3 x##



I have proved that tan 3x identity, but how do I solve the equation?

I know I have to use set tan 3x=1, but what is the domain of x?





0 commentaires:

Enregistrer un commentaire