1. The problem statement, all variables and given/known data
Let [itex]\vec{F}=2\hat{i}-3\hat{j}[/itex] act on an object at point (5,1,3). Find the torque about the point (4,1,0)
2. Relevant equations
[itex]\tau = \vec F \times \vec r[/itex]
3. The attempt at a solution
Please tell me if my procedure is correct.
Let the object occupy point A at (5,1,3) and let (4,1,0) be point B.
Subtracting the distances in each dimension from point A to point B, we see that [itex]\vec{r}=-\hat{i}-3\hat{k}[/itex]
Because [itex]\tau=\vec{F}\times\vec{r}[/itex]:
[tex]\tau = \left[ {\begin{array}{*{20}{c}}
2\\
{ - 3}\\
1
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{ - 1}\\
0\\
{ - 3}
\end{array}} \right] = 6\hat i + 5\hat j - \hat k[/tex]
Let [itex]\vec{F}=2\hat{i}-3\hat{j}[/itex] act on an object at point (5,1,3). Find the torque about the point (4,1,0)
2. Relevant equations
[itex]\tau = \vec F \times \vec r[/itex]
3. The attempt at a solution
Please tell me if my procedure is correct.
Let the object occupy point A at (5,1,3) and let (4,1,0) be point B.
Subtracting the distances in each dimension from point A to point B, we see that [itex]\vec{r}=-\hat{i}-3\hat{k}[/itex]
Because [itex]\tau=\vec{F}\times\vec{r}[/itex]:
[tex]\tau = \left[ {\begin{array}{*{20}{c}}
2\\
{ - 3}\\
1
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{ - 1}\\
0\\
{ - 3}
\end{array}} \right] = 6\hat i + 5\hat j - \hat k[/tex]
0 commentaires:
Enregistrer un commentaire