A disk of mass M and radius R is held up by a massless string. (The two ends of the string are connected to a ceiling and the disk rests on the bottom of the string.) The coefficient of friction between the disk is μ. What is the smallest possible tension in the string at its lowest point?
This is from "Introduction to Classical Mechanics" by David Morin. I am confused as to how T(∏/2) = Mg/2. T(∏/2) refers to the tension in the rightmost point of the disk where the string does not touch the disk anymore.)
This is from "Introduction to Classical Mechanics" by David Morin. I am confused as to how T(∏/2) = Mg/2. T(∏/2) refers to the tension in the rightmost point of the disk where the string does not touch the disk anymore.)
0 commentaires:
Enregistrer un commentaire