1. The problem statement, all variables and given/known data
Let f be a non-negative measurable function. Prove that
[itex] \lim _{n \rightarrow \infty} \int (f \wedge n) \rightarrow \int f.[/itex]
3. The attempt at a solution
I feel like I'm supposed to use the monotone convergence theorem.
I don't know if I'm on the right track but I created a sequence of functions so that
[itex]h_1(x) \leq h_2(x) \cdots [/itex] where
[itex]h_1(x) = \min(f_1(x), n)[/itex]
[itex]h_2(x) = \min(f_2(x),n) [/itex]
[itex]\vdots [/itex]
[itex]h_n(x) = \min(f_n(x),n) [/itex]
So the [itex]h(x) = \lim_{n\rightarrow\infty} h_n(x) = \lim_{n\rightarrow \infty} \min(f_n,n) = \lim_{n \rightarrow \infty}\min(f,n) [/itex]
Let f be a non-negative measurable function. Prove that
[itex] \lim _{n \rightarrow \infty} \int (f \wedge n) \rightarrow \int f.[/itex]
3. The attempt at a solution
I feel like I'm supposed to use the monotone convergence theorem.
I don't know if I'm on the right track but I created a sequence of functions so that
[itex]h_1(x) \leq h_2(x) \cdots [/itex] where
[itex]h_1(x) = \min(f_1(x), n)[/itex]
[itex]h_2(x) = \min(f_2(x),n) [/itex]
[itex]\vdots [/itex]
[itex]h_n(x) = \min(f_n(x),n) [/itex]
So the [itex]h(x) = \lim_{n\rightarrow\infty} h_n(x) = \lim_{n\rightarrow \infty} \min(f_n,n) = \lim_{n \rightarrow \infty}\min(f,n) [/itex]
0 commentaires:
Enregistrer un commentaire